
刘晓倩,女,2025年毕业于中国地质大学(武汉)数学与物理学院,获得工学博士学位,研究方向为计算神经科学及类脑计算。参加认知神经动力学原始创新专题研讨会、International Conference on Computational Biology and Biomedical Science等学术会议,在Science China-Technological Sciences、European Physical Journal Plus等国际高水平期刊上发表论文5余篇。
主要论文成果如下:
[1] 2024, Energy consumption of spontaneous transitions in a synaptic delay network, European Physical Journal Plus.
[2] 2023, Energy-efficiency computing of up and down transitions in a neural network, Journal of Neurophysiology.
[3] 2022, Energy-efficient firing modes of Chay neuron model in different bursting kinetics, Science China-Technological Sciences.
[4] 2022, The extremal irregularity of connected graphs with given number of pendant vertices, Czechoslovak Mathematical Journal.
[5] 2021, Remarks on the bounds of graph energy in terms of vertex cover number or matching number, Czechoslovak Mathematical Journal.